ButterAddict

Theoretical Techniques Key Equations

Word count: 432Reading time: 2 min
2020/02/25
loading

Key equations (need to remember) for Cambridge Part II Theoretical techniques course.

Huckel

The resonance energy is the difference between total Huckel energy and the summed energies of isolated bonds in the structure.

Cyclic polyenes

Energy - this is equivalent to drawing a Frost circle! \[\begin{align} E_s=\alpha + 2\beta \cos(\frac{2s\pi}{N})&&s=0,\pm1,...\pm\frac{N}{2} \end{align}\] Coefficients \[\begin{align} c_s^{(0)}&=\sqrt{\frac{1}{N}}\\ c_s^{(ns)}&=\sqrt{\frac{2}{N}}\sin(\frac{2ns\pi}{N}) && n=1,2,...,\frac{N-1}{2}\\ c_s^{(nc)}&=\sqrt{\frac{2}{N}}\cos(\frac{2ns\pi}{N})\\ c_s^{(N/2)}&=\sqrt{\frac{1}{N}}(-1)^s \end{align}\]

Linear polyenes

Energy \[\begin{align} E_s=\alpha + 2\beta \cos(\frac{s\pi}{N+1})&&s=1,2,...,N. \end{align}\] Coefficients \[\begin{align} c_s^{(n)}&=\sqrt{\frac{2}{N+1}}\sin(\frac{ns\pi}{N+1}) && n=1,2,...,N \end{align}\]

Alternant hydrocarbons

Usually start labelling a starred atom at the end.

  • Energies symmetrically placed. \(E=\alpha \pm 2k\beta\).
  • Coefficients for pairs of energies: changing the sign of the coefficients on the unstarred atoms.
  • In a neutral molecule, population \(q_s=1\).
  • In an odd alternant, there is a non-bonding MO - \(E=\alpha\) - where all the unstarred atoms have 0 coefficient, and the sum of starred atoms around an unstarred atom is 0.

Wavefunction

Slater determinant

\[ \Psi=\frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_a(1)&\chi_b(1)&...&\chi_N(1)\\ \chi_a(2)&\chi_b(2)&...&\chi_N(2)\\ ...\\ \chi_a(N)&\chi_b(N)&...&\chi_N(N) \end{vmatrix}. \]

Population and bond order

The population operator is \(\hat{q_s}=|\phi_s\rangle\langle\phi_s|\);

The bond order operator is \(\hat{p_{st}}=\frac{1}{2}(|\phi_s\rangle\langle\phi_t|+|\phi_t\rangle\langle\phi_s|)\).

To calculate from coefficients, use \[\begin{align} q_s=\sum_n f_n|c_s^n|^2\\ p_{st}=\sum_n f_n c_s^nc_t^n \end{align}\]. $$

Physicists’ notation for 2-electron integrals

\[ \langle ab|cd\rangle=\int_1\int_2\psi^*_a(1)\psi^*_b(2)\frac{1}{r_{12}}\psi_c(1)\psi_d(2)\,d\mathbf{r_1}\mathbf{r_2}. \]

Perturbation theory

First order perturbation to the eigenvalues: \[ \Delta \epsilon_i=\langle\psi_i|\Delta \hat{H}|\psi_i\rangle. \]

Normal modes

Mass weighted coordinates

\[ q_i=\sqrt{m_i}x_i \]

Dynamical matrix

\[ K_{ij}=\frac{1}{\sqrt{m_i m_j}}\frac{\partial^2 V}{\partial x_i x_j}\Big{|}_{x=0}. \]

Perturbation of normal mode frequencies

\[ \omega_m^2=(\omega_m^{(0)})^2+\langle Q_m^{(0)}|\hat{K}^{(1)}|Q_m^{(0)}\rangle. \]

Webmentions - no interactions yet

    CATALOG
    1. 1. Huckel
      1. 1.1. Cyclic polyenes
      2. 1.2. Linear polyenes
      3. 1.3. Alternant hydrocarbons
    2. 2. Wavefunction
      1. 2.1. Slater determinant
      2. 2.2. Population and bond order
      3. 2.3. Physicists’ notation for 2-electron integrals
    3. 3. Perturbation theory
    4. 4. Normal modes
      1. 4.1. Mass weighted coordinates
      2. 4.2. Dynamical matrix
      3. 4.3. Perturbation of normal mode frequencies